博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
中国人工智能学会通讯——深度学习的迁移模型 一、迁移学习的三大优点
阅读量:6295 次
发布时间:2019-06-22

本文共 788 字,大约阅读时间需要 2 分钟。

一、迁移学习的三大优点

为什么我们做迁移学习?我总结了三条原因。

●小数据。我们生活当中大量遇见的是小数据而不是大数据,当数据很稀疏,看到不同的类别我们还是能在当中做出很靠谱的模型。这并不是空穴来风,而是之前我们有过很多大数据的经验可以去借鉴,站在大数据的巨人肩膀上,所以人工智能大量的应用,迁移学习这种模式是必不可少的。

●可靠性。 即使我们有一个大数据模型,我们也很关心它的可靠性。把一个模型迁移到不同的领域,就会发现它的准确率会大量下降,如何防止这一点,就需要模型本身具有自适应的能力,能够自带迁移能力。

●个性化。整个社会,我们的应用在向一个个性化的方向发展,有了云端,有了各种各样的终端,终端的操作者都是我们个性化的人。那么我们让一个模型、一个服务来适应每个人的特性,迁移学习是必不可少的。

迁移学习的难点在于找出不变量

迁移学习又是很难的。教育学有一个概念叫“学习迁移”。就是说,如果一个学生学到了很靠谱的知识,怎样检测呢,就是看看他有没有能力迁移到未来的场景,再学一门新课他就发现学得容易,但是这种学习迁移能力的传输又非常难。

我们来看看怎样找出不变量。在国内和世界很多地方,驾驶员都是坐在左边,但是去香港,驾驶员就是在右边,很多人不会开车了,就会出现危险。如果用迁移学习教你一招马上可以开,而且很安全,就是找出一个不变量。这个不变量就是司机的位置总是靠路中间最近的,你就保持司机的位置离中线最近就可以了。

找出不变量很难,但是在其他的领域已经大量出现。最近Yann LeCun提出一个问题:机器学习的热力学模型是什么?我的回答是迁移学习,把一个领域里面的知识,也就是“能量”,转化到另外一个领域,这和热力学把两个物质放在一起,然后研究热能量是如何在物质间传播的,是类似的概念。区别是,在我们这里的知识比物理里的能量复杂很多倍。所以这个问题在科学上也有深远意义。

转载地址:http://obtta.baihongyu.com/

你可能感兴趣的文章
小程序 · 跳转带参数写法,兼容url的出错
查看>>
flutter error
查看>>
Flask框架从入门到精通之模型数据库配置(十一)
查看>>
10年重新出发
查看>>
2019年-年终总结
查看>>
聊聊elasticsearch的RoutingService
查看>>
让人抓头的Java并发(一) 轻松认识多线程
查看>>
从源码剖析useState的执行过程
查看>>
地包天如何矫正?
查看>>
中间件
查看>>
Android SharedPreferences
查看>>
css面试题
查看>>
Vue组建通信
查看>>
用CSS画一个带阴影的三角形
查看>>
前端Vue:函数式组件
查看>>
程鑫峰:1.26特朗.普力挺美元力挽狂澜,伦敦金行情分析
查看>>
safari下video标签无法播放视频的问题
查看>>
01 iOS中UISearchBar 如何更改背景颜色,如何去掉两条黑线
查看>>
对象的继承及对象相关内容探究
查看>>
Spring: IOC容器的实现
查看>>